

Auto'Mobilités Auvergne-Rhône-Alpes

Ce document vous est remis à titre personnel. La reproduction, l'adaptation ou l'utilisation de tout ou partie de ce document est autorisée pour un usage personnel et privé, à l'exclusion de toute utilisation commerciale. En cas de partage et/ou d'adaptation, vous vous engagez à créditer le document et à indiquer si des modifications ont été effectuées.

PRESENTATION

Le Campus des Métiers et des Qualifications Auto'Mobilités (Auvergne-Rhône-Alpes) est fier de vous partager cet e-book de formation sur le thème de la batterie et charge de batterie.

Co-créé par des professionnels de la pédagogie, des industriels, des chercheurs et des apprenants, ce livret propose différents modules reprenant les besoins en compétences clés lié au thème associé.

Chaque e-book propose:

- 1. Un panorama des objectifs pédagogiques reprenant les besoins du terrain
- 2. Un séquencement lisible en modules et en chapitres
- 3. Les savoirs clés essentiels pour chaque chapitre
- 4. Des suggestions de questions d'évaluation

Tout enseignant ou formateur peut exploiter et s'approprier les ressources de ce parcours pour son propre exercice.

Le campus met également à disposition des outils pédagogiques matériels et digitaux développés collaborativement.

N'hésitez pas à nous contacter pour obtenir les parcours développés sur d'autres thématiques, pour toute suggestion ou question sur les contenus et outils pédagogiques.

POUR + D'INFORMATIONS

Rendez-vous sur le site internet du CMQ Auto'Mobilités
Contactez le directeur opérationnel du campus : M. BENECH David

SOMMAIRE

Module 1 - Les différentes technologies de batterie et de borne de recharge

Module 2 - Principes de fonctionnement d'une batterie

Module 3 - Règles et procédures de sécurité

Module 4 - Mise en oeuvre et utilisation d'une batterie et d'une borne de recharge

Module 5 - Impacts environnementaux

Evaluation du parcours – Questions de QCM

	Comprendre les différentes technologies de batteries et de bornes
OBJECTIFS	Mettre en œuvre une batterie et une borne de recharge en toute sécurité
	Connaitre les enjeux environnementaux des batteries et des bornes

MODULE 1 LES DIFFÉRENTES TECHNOLOGIES DE BATTERIE ET DE BORNES DE RECHARGE

Comment est stockée l'énergie dans un véhicule électrique

Chapitre 1 Quels sont les vocabulaires et notions nécessaires à l'étude et à l'utilisation desbatteries? Chapitre 2 De quoi est constituée une batterie ? Chapitre 3 Quelles sont les différentes technologies de batteries et leurs caractéristiques ? Chapitre 4 Quelle batterie associer à quel usage ? Chapitre 5 Quels sont les moyens de recharger une batterie ? **Chapitre 6** Quelles sont les évolutions technologiques des batteries et des moyens derecharge? Sensibilisation Et 3 niveaux Approfondissement d'apprentissage : **Expertise**

MODULE 1 LES DIFFÉRENTES TECHNOLOGIES DE BATTERIE ET DE BORNES DE RECHARGE

Chapitre 1

Quels sont les vocabulaires et notions nécessaires à l'étude et à l'utilisation des batteries ?

- Le vocabulaire et les notions de bases sont :
- Courant tension,
- · Cellule, module, pack,
- Impédance, ampère .h, watt.h, série //,
- SOC, SOH.
- Accumulateur primaire, secondaire (pile, Batterie)

Maitriser le vocabulaire et les notions de base

Chapitre 2

De quoi est constituée une batterie ?

- Une batterie possède deux bornes (+,-):
- C'est un assemblage de cellules élémentaires reliées en série ou en /
- Chaque cellule est constituée de deux électrodes + & séparées par un séparateur et au contact d'un électrolyte
- · Le tout étant dans une enveloppe étanche

Connaitre les différents éléments constitutifs d'une batterie

Chapitre 3

Quelles sont les différentes technologies de batteries et leurs caractéristiques ?

- Les différentes batteries sont Pb / NiCd /NiMH /Lithium ion / Li métal polymère ...,
- Une batterie se caractérise par sa puissance, son énergie, sa sécurité, son protocole de charge, sa duréede vie ...,
- Le diagramme de Ragone permet de positionner les différentes technologies dans un plan Puissance Energie.

Lister différentes technologies de batterie

Savoir que chaque batterie a des performances propres

Différencier une batterie puissance et une batterie énergie

MODULE 1 LES DIFFÉRENTES TECHNOLOGIES DE BATTERIE ET DE BORNES DE RECHARGE

Chapitre 4

Quelle batterie associer à quel usage?

- La batterie plomb se retrouve comme batterie de servitude dans la majorité des véhicules.
- Pour la batterie de traction, le NiMH intervient dans les véhicules Hybride et, la Lithium ion dans les Hy- brides et Full Electrique.

Savoir quelles sont les technologies utilisées dans chaque type de véhicule

Chapitre 5

Quels sont les moyens de recharger une batterie ?

- Tous les véhicules ayant une chaîne de traction électrique mettent en oeuvre la recharge par récupération au freinage / à la décélération,
- Les véhicules hybrides plug in ou full électrique se rechargent aussi via une borne.

Connaitre les différentes possibilités de charge d'un véhicule

Chapitre 6

Quelles sont les différentes technologies de batteries et leurs caractéristiques ?

- Pour les bornes, les évolutions concernent la puissance, la durée de charge et la recharge inductive dynamique,
- Pour les batteries, les évolutions portent sur les compositions chimiques
- Les récupérateurs d'énergie évoluent également,
- Au niveau de la batterie, les enjeux qui poussent les technologies à évoluer sont de différents ordres : le coût, la durée de vie, l'autonomie

Savoir que la technologie des batteries et des moyens de système de recharge est en perpétuelle évolution

Connaitre les raisons pour lesquelles ces systèmes évoluent

MODULE 2 PRINCIPES DE FONCTIONNEMENT D'UNE BATTERIE

Chapitre 1 Quels sont les phénomèn	es physiques mis en jeu dans une cellule lithium ion?				
Chapitre 2 Quel est le comportement	t électrique d'une cellule et ses caractéristiques ?				
Chapitre 3 Quels sont les facteurs de vieillissement d'une cellule lithium ion ?					
	Sensibilisation				
Et 3 niveaux d'apprentissage :	Approfondissement				
	Expertise				

MODULE 2

PRINCIPES DE FONCTIONNEMENT D'UNE BATTERIE

Chapitre 1

Quels sont les phénomènes physiques mis en jeu dans une cellule lithium ion?

- Le principal mécanisme physique mis en jeu est un mécanisme d'insertion des ions lithium qui transitent d'un matériau d'électrode à l'autre,
- Les différences de potentiel électrochimique fixent la tension de cellule,
- L'électrode négative est constituée de graphite ou de titanate,
- L'électrode positive est constituée d'un oxyde de lithium dont la nature dépend de la variante technologique (ex : NMC, LFP, LMO, etc.)

Savoir nommer et expliquer les phénomènes physiques mis en jeu dans une cellule Li-ion Connaître la nature chimique des électrodes

Chapitre 2

Quel est le comportement électrique d'une cellule et ses caractéristiques ?

- Le protocole de charge d'une batterie Li-ion est appelé CCCV (constant current, constant voltage).
- Il commence par une phase de charge à courant constant suivie d'une phase de charge à tension constante. Il dure classiquement environ 1h,
- La tension interne varie en fonction de l'état de charge,
- La puissance et l'impédance de la cellule varient en fonction de l'état de charge, de la température et du vieillissement
- Pour une cellule Li-ion l'énergie déchargée (capacité) ne dépend pas du courant de décharge, contrairement à la batterie Pb, mais dépend fortement de la température.
- Les batterie Li-ion ont une autodécharge de 1 ou 2% par mois

Savoir quel est le protocole de charge d'une cellule Li-ion Savoir quelles caractéristiques électriques de la cellule varient en fonction de différents crotières Dissocier l'autodécharge (phénomène réversible) du vieillissement (irréversible)

MODULE 2

PRINCIPES DE FONCTIONNEMENT D'UNE BATTERIE

Chapitre 3

Quels sont les facteurs de vieillissement d'une cellule lithium ion?

- Les 2 types de vieillissements sont le vieillissement en cyclage et calendaire (au repos).
- Pour le vieillissement calendaire les facteurs sont : température et état de charge (SOC)
- Pour le vieillissement en cyclage les facteurs sont les mêmes que pour le vieillissement calendaire complétés de la forme du courant, le profil de SOC,
- Pour limiter le vieillissement, il faut éviter les états de charge élevés, les températures extrêmes (chaud pour le calendaire et froid pour le cyclage)
- Les effets du vieillissement se définissent par le SOH (state of health).
- Il est calculé soit à partir de la perte de capacité (= perte autonomie), soit à partir de l'augmentation de résistance (= perte de puissance).

Savoir qu'il existe 2 types de vieillissements Connaitre les facteurs de vieillissement et comment le limiter Connaitre les effets du vieillissement

MODULE 3 RÉGLES ET PROCÉDURES DE SÉCURITÉ

Comment intervertir en toute sécurité sur une batterie ?

Chapitre 1	Quels sont les risques et leurs conséquences lors de l'intervention sur une batterie ?
Chapitre 2	Qui peut intervenir et sous quelles conditions ?
Chapitre 3	Comment garantir la sécurité des personnes et des biens ?

Sensibilisation

Et 3 niveaux d'apprentissage :

Approfondissement

Expertise

MODULE 3 RÉGLES ET PROCÉDURES DE SÉCURITÉ

Chapitre 1

Quels sont les risques et leurs conséquences lors de l'intervention sur une batterie ?

- Les risques sont différents en fonction des typologies de véhicule concernées et de la tension impliquée
- Les différents types d'interventions sont : le remplacement, la réparation, le recyclage
- Les risques sont de nature : électriques, chimiques, brulures, explosions, pollutions
- Les risques ont des conséquences corporelles, matérielles, environnementales
- Co

Savoir identifier les risques en fonction des types d'interventions Connaître les conséquences liées à ces risques

Chapitre 2

Qui peut intervenir et sous quelles conditions?

- Il existe des niveaux d'habilitations requis en fonction de la nature de l'intervention
- L'habilitation d'une personne est de la responsabilité du chef d'entreprise en France
- Les règles, les appellations et les niveaux d'habilitations peuvent être différents en fonction des pays

Associer une habilitation à une intervention Connaitre les modalités d'obtention des habilitations

Chapitre 3

Comment garantir la sécurité des personnes et des biens ?

- Pour chaque type d'intervention le constructeur/fabricant met à disposition une procédure à suivre
- Chaque procédure précise les équipements à utiliser pour l'intervenant en toute sécurité
- Il ne faut pas se limiter à la protection de l'intervenant mais prendre en compte l'environnement global de l'intervention
- **(6)**

Rechercher et appliquer la procédure d'intervention adaptée Utiliser les équipements appropriés

Et 3 niveaux d'apprentissage :

MODULE 4 MISE EN OEUVRE ET UTILISATION D'UNE BATTERIE ET D'UNE BORNE DE RECHARGE

Comment garantir le bon fonctionnement d'une batterie ?

Chapitre 1 Quelles sont les différentes modalités de fonctionnement des batteries et des bornes ?
Chapitre 2 Quels sont les éléments qui en assurent le bon fonctionnement ?
Chapitre 3 Quels sont les moyens de diagnostic ?

Sensibilisation

Expertise

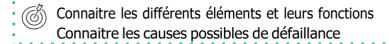
Approfondissement

MODULE 4 MISE EN OEUVRE ET UTILISATION D'UNE BATTERIE ET D'UNE BORNE DE RECHARGE

Chapitre 1

Quelles sont les différentes modalités de fonctionnement des batteries et des bornes ?

- Chaque batterie dispose de son propre protocole de charge, décharge (Cmax, Tmax, Umax) qui doit être respecté pour garantir le protocole au niveau de chaque cellule
- La batterie doit être surveillée par une électronique, qui contrôle la température et la tension de chaque élément, appelée BMS
- Le BMS pilote les échanges d'informations et d'énergie entre la borne et la batterie



Chapitre 2

Quels sont les éléments qui en assurent le bon fonctionnement ?

- Le bon fonctionnement est assuré par le BMS et son instrumentation qui contrôlent chaque composant
- Le non-fonctionnement d'une batterie peut avoir pour origine une défaillance d'un des éléments de batterie elle-même, ou du BMS, ou du calculateur du véhicule
- Il faut savoir identifier la cause d'une défaillance : batterie, BMS, calculateur, borne de charge, en fonction de l'architecture.

Chapitre 3

Quels sont les moyens de diagnostic?

- Il existe différentes mesures : tension, courant, température,
- Les mesures sont prises aux bornes, sur les cellules, (en charge et à vide)
- Les grandeurs sont spécifiées par le constructeur
- Les outils de mesures sont le multimètre, l'oscilloscope, la sonde de température et l'outil de diagnostic
- Caonnaitre les différentes mesures et savoir où les prendre Connaitre les ordres de grandeur de référence / d'usage Choisir l'outil adapté / approprié

MODULE 5 IMPACTS ENVIRONNEMENTAUX

Comment minimiser l'empreinte environnementale d'une batterie ?

Chapitre 1 Quels sont les principaux	1 Quels sont les principaux impacts environnementaux?					
Chapitre 2 Quelles sont les contrainte	2 Quelles sont les contraintes réglementaires ?					
Chapitre 3 Quelles sont les solutions	3 Quelles sont les solutions ?					
	Sensibilisation					
Et 3 niveaux d'apprentissage :	Approfondissement					
	Expertise					

MODULE 5 IMPACTS ENVIRONNEMENTAUX

Chapitre 1

Quels sont les principaux impacts environnementaux ?

- L'impact environnemental est présent sur la totalité du cycle de vie de la batterie (de l'extraction, au transport, à la transformation des matériaux jusqu'au recyclage)
- La destruction de l'écosystème, la pollution des sols, des eaux, de l'air, la consommation d'énergie (fossile, nucléaire...) et des matières premières
- Les enjeux géopolitiques liés à la fabrication de la batterie impactent l'environnement

Connaître les différents impacts environnementaux tout au long du cycle de vie de la batterie

Chapitre 2

Quelles sont les contraintes réglementaires ?

- Il existe des cas d'applications soumis à des contraintes réglementaires, comme le transport, le recyclage, le remplacement, le stockage....
- Il est nécessaire de savoir retrouver les textes réglementaires relatifs à chaque cas.

Savoir qu'il existe des textes qui s'appliquent aux batteries

Savoir retrouver les ressources qui fixent les contraintes réglementaires à un cas d'application

Chapitre 3

Quelles sont les solutions?

- Si elle n'est plus utilisable dans son usage initial, une batterie véhicule peut être reconditionnée pour être réutilisée dans une autre application avant son recyclage final
- Elle peut connaitre une seconde vie en Retrofit, ou encore en stockage d'énergie stationnaire

Connaître les solutions existantes

EVALUATION DU PARCOURS

Retrouvez ci-dessous des exemples de questions de QCM à réutiliser sur cette thématique

- 1. Quels sont les deux types de batteries utilisées dans les véhicules ?
 - Batterie hybride et batterie électrique
 - Batterie haute tension et batterie basse tension
 - Batterie d'énergie et batterie de puissance
- 2. Une batterie d'énergie se distingue par
 - Ses électrodes fines
 - Ses électrodes épaisses
 - Sa couleur
 - Sa forme
- 3. Que signifie BMS?
 - Battery Management System
 - Battery Monitoring Service
 - Battery Management Surveillance
- 4. Classez ces éléments du plus petit au plus grand :
 - Un module, une cellule, un pack
 - Une cellule, un module, un pack
 - Une cellule, un pack, un module
- 5. Qu'est ce qui n'est pas surveillé par le BMS ?
 - La température des cellules
 - · L'état de santé des cellules
 - L'alignement des cellules
- 6. Pourquoi le recyclage des batteries est-il compliqué aujourd'hui?
 - Car il n'y a pas de processus unique de recyclage
 - Car la seconde vie est une solution privilégiée
 - Car le transport qu'il engendre émet trop d'impacts
- 7. Si un moteur électrique d'une puissance de 80kW est alimenté par une batterie de 40kWh, quel sera le rapport Puissance / Energie ?
 - P/E = 2
 - P/E = 0.5
 - P/E = 40

- 8. La batterie d'énergie a tendance à être utilisée pour alimenter
 - Les véhicules hybrides
 - Les véhicules électriques
 - Les véhicules thermiques
- 9. Pour alimenter une trottinette électrique, on aura besoin
 - D'un pack batterie
 - D'un module batterie
 - De quelques cellules en série et en parallèle
- 10. Dans une cellule lithium-ion, l'électrode positive est constituée :
 - d'un oxyde de lithium
 - de graphite
 - de titanate
- 11. Pour limiter le vieillissement d'une cellule lithium-ion, il faut éviter :
 - les états de charge élevés
 - les états de charge faibles
 - les températures extrêmes chaudes
 - les températures extrêmes froides
- 12. Le vieillissement d'une cellule lithium-ion se caractérise par :
 - Une perte de capacité
 - Une perte de résistance
 - Une augmentation de résistance
 - De la fatigue
- 13. Chaque batterie dispose de son propre protocole de charge.
 - Vrai
 - Faux
- 14. La batterie doit être surveillée par une électronique, qui contrôle la température et la tension de chaque élément.
 - Vrai
 - Faux
- 15. On peut mesurer la tension de la batterie avec :
 - Le multimètre
 - L'oscilloscope
 - La sonde de température
 - · L'outil de diagnostic
- 16. Si une batterie d'un véhicule n'est plus utilisable dans son usage initial, peut-elle être réutilisée dans une autre application avant son recyclage final ?
 - Oui
 - Non

Ce parcours a été réalisé avec le soutien du Programme d'investissement d'avenir

